Image Recognition by Deep Learning
نویسندگان
چکیده
منابع مشابه
Image Recognition with Deep Learning Techniques
This paper investigates a Deep Learning (DL) approach for image recognition. We have considered two DL neural models: Convolutional Neural Network (CNN) and Deep Belief Network (DBN). We have chosen several architectures for each of the proposed models. We have chosen Caltech101 dataset to train and test the above proposed models; this database is composed by images belonging to 101 widely vari...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملDeep Image: Scaling up Image Recognition
We present a state-of-the-art image recognition system, Deep Image, developed using endto-end deep learning. The key components are a custom-built supercomputer dedicated to deep learning, a highly optimized parallel algorithm using new strategies for data partitioning and communication, larger deep neural network models, novel data augmentation approaches, and usage of multi-scale high-resolut...
متن کاملDeep Learning Based Food Recognition
Food is the cornerstone of people’s life. Nowadays more and more people cares about the dietary intake since unhealthy diet leads to numerous diseases, like obesity and diabetes. Accurately labelling food items is significantly essential to keep fit and live a healthy life. However, currently referring to nutrition experts or Amazon Mechanical Turk is the only way to recognize the food items. I...
متن کاملDeep Learning For Smile Recognition
Inspired by recent successes of deep learning in computer vision, we propose a novel application of deep convolutional neural networks to facial expression recognition, in particular smile recognition. A smile recognition test accuracy of 99.45% is achieved for the Denver Intensity of Spontaneous Facial Action (DISFA) database, significantly outperforming existing approaches based on hand-craft...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Robotics Society of Japan
سال: 2017
ISSN: 0289-1824,1884-7145
DOI: 10.7210/jrsj.35.180